Books that educate, stimulate and inspire (part 2).

Books that educate, stimulate and inspire (part 2).

Scientific research is portrayed as an objective pursuit, but it is always influenced by an array of subjective emotions – joy, frustration, rejection, validation, egotism, confidence, worry, friendship, competition, intuition, luck, success, failure. For better or worse, it is these forces that often determine how discoveries are made and how science is communicated.

I enjoy reading books that delve into the stories behind research discoveries and that reveal the passion, politics and personalities that drive scientific research. About a year ago, I compiled a list of books that I recommend (click here to see them). Here is a new list of more recent books I’ve read. I hope you enjoy these. Feel free to suggest others – I’m always looking for a good read.

Blue skies and bench space: Adventures in Cancer Research by Kathy Weston. A fantastic and enjoyable description of the science, scientists and personalities at the Imperial Cancer Research Fund Laboratories in London, especially during the ‘70s and ‘80s, when the ICRF was at the forefront of research in developmental biology, cell cycle control, apoptosis and cancer. The book also serves as an excellent companion and comparison to “Life Illuminated” (below). You can also read the book free online here.

Life Illuminated: Selected Papers from Cold Spring Harbor
Volume 2, 1972–1994. An account of some of the key papers that emerged from CSHL at a time when the Laboratory was producing some of the key breakthroughs in our understanding of DNA replication, transcription, tumor viruses and cancer biology. Each paper has a commentary from one of the investigators involved in the work.

Paths to Innovation: Discovering Recombinant DNA, Oncogenes, and Prions, in One Medical School, Over One Decade. and Ambition and delight. by Henry Bourne. These are two enjoyable books from Henry Bourne. The first (Paths to Innovation) is a wonderful account of an exciting period in the history of UCSF, when the University recruited and fostered young, talented scientists who went on to make Nobel prize-winning fundamental discoveries in molecular and cellular biology. In the second book (Ambition and Delight) Henry Bourne provides an honest, enjoyable and often funny account of his career in academic research – an excellent book for young scientists embarking on a career in research.

Apprentice to genius. The Making of a Scientific Dynasty. By Robert Kanigel. A wonderful book that describes a dynasty of mentor-protégé relationships among a group of brilliant neuroscientists (Steve Brodie, Julius Axelrod, Sol Snyder, and Candace Pertall). It’s one of the best and most incredibly honest accounts of what scientific mentor-protégé relationships are really like. Highly recommended

Brave Genius: A Scientist, a Philosopher, and Their Daring Adventures from the French Resistance to the Nobel Prize. By Sean B. Carroll An amazing account of the story of Jacques Monod and Albert Camus, two friends involved in the French Resistance during the Second World War, and who then went on to produce some of the greatest work in their respective fields (molecular biology and literature)

Ordinary geniuses. How Two Mavericks Shaped Modern Science. By Gino Segre. This enjoyable book tells the story of Max Delbruck and George Gamow, two friends who pioneered some of the most important breakthroughs in molecular biology and physics in the last century.

Laboratory Life. The Construction of Scientific Facts. By Bruno Latour. In this book, Bruno Latour, presents a sociological study of the process of lab research and scientific discovery. Although the study was conducted decades ago, there is a lot to learn from this book on how and why scientific research is organized the way it is. We need more books like this.

Entering an Unseen World. A Founding Laboratory and Origins of Modern Cell Biology (1910-1974) by Carol L Moberg. This enjoyable book describes the history of cell biology told through some of the pioneering discoveries made over the last century at the Rockefeller University

The Molecular Vision of Life. Caltech, the Rockefeller Foundation, and the Rise of the New Biology by Lily E Kay. This books provides an interesting account of a period between the ‘30s and ‘50s when Caltech and the Rockefeller Foundation joined forces to foster the biology that ultimately would lead and inspire to rise of modern genetics and molecular biology. Interestingly, this work had its roots in an early eugenics program supported by the Rockefeller Foundation.

 

 

Lab journal club: measuring circulating insulins in flies

In a recent lab journal club we discussed a paper from the lab of Seung Kim:

A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. Park S, Alfa RW, Topper SM, Kim GE, Kockel L, Kim SK. (2014) PLoS Genetics, Aug 7;10(8):e1004555.

This paper described a new approach to measure circulating insulins in Drosophila. The authors generated transgenic flies that carry epitope-tagged versions of a drosophila insulin-like peptide (dILP). They then developed an efficient and high- throughput ELISA approach to measure levels of circulating dILP within the hemeolymph of these flies. Using this approach they defined new genes required for controlling dILP release (vs expression). They also showed that changes in circulating dILPs often are not reflected in altered mRNA or protein levels, and that dILP release from neurosecretory cells can be influenced by peripheral insulin signaling.

Measuring circulating dILPs in flies is not straightforward. Many papers have relied on indirect measures (such as dILP mRNA or protein in neurosecretory cells, or assays for downstream insulin/PI3K/FOXO signaling) to infer changes in circulating dILPs. We liked the paper because it provides a powerful new tool to actually measure hemolymph dILP levels. These flies and ELISA assays will help with future studies on the genetic and signaling mechanisms that control insulin function.

Lab Mimosas and celebration

Congratulations to Sabi and Abhishek for getting their papers accepted. And Happy Birthday to Beth our newest grad student to join the lab. Sabi’s paper is on the nutritional control of translation in Drosophila and has been accepted in Biology Open. Abhi’s paper describes a role for muscle ribosome synthesis in the control of systemic insulin signaling and larval growth, and has been accepted in PLoS Genetics.

 

image

 

image